
100IdeasforSecondaryTeachers_Sample

100 Ideas for
Secondary Teachers:

Outstanding Computing
(Sample) Lessons

Simon Johnson

100IdeasforSecondaryTeachers_Sample

BLOOMSBURY EDUCATION

Bloomsbury Publishing Plc

50 Bedford Square, London, WC1B 3DP, UK

29 Earlsfort Terrace, Dublin 2, Ireland

BLOOMSBURY, BLOOMSBURY EDUCATION and the Diana logo are

trademarks of Bloomsbury Publishing Plc

First published in Great Britain 2021

Text copyright © Simon Johnson, 2021

Simon Johnson has asserted his right under the Copyright, Designs and

Patents Act, 1988, to be identified as Author of this work

Bloomsbury Publishing Plc does not have any control over, or responsibility

for, any third-party websites referred to or in this book. All internet addresses

given in this book were correct at the time of going to press. The author and

publisher regret any inconvenience caused if addresses have changed or sites

have ceased to exist, but can accept no responsibility for any such changes

All rights reserved. No part of this publication may be reproduced or

transmitted in any form or by any means, electronic or mechanical, including

photocopying, recording, or any information storage or retrieval system,

without prior permission in writing from the publishers

A catalogue record for this book is available from the British Library

ISBN: PB: 978-1-4729-8440-1; ePDF: 978-1-4729-8442-5;

ePub: 978-1-4729-8441-8

2 4 6 8 10 9 7 5 3 1 (paperback)

Typeset by Newgen KnowledgeWorks Pvt. Ltd., Chennai, India

Printed and bound in the UK by CPI Group Ltd, Croydon CR0 4YY

All papers used by Bloomsbury Publishing Plc are natural, recyclable

products from wood grown in well managed forests and other sources. The

manufacturing processes conform to the environmental regulations of the

country of origin

To find out more about our authors and books visit www.bloomsbury.com

and sign up for our newsletters

http://www.bloomsbury.com/

100IdeasforSecondaryTeachers_Sample

Introduction i

Testimonials ii

How to use this book iii

Part 1: Programming strategies 1

 1 Paired programming 2

 2 Rubber duck debugging 3

 3 Code golf 4

 4 Game design 6

 5 PRIMM 7

 6 Parsons problems 8

 7 Use-modify-create 9

 8 Hour of Code 10

iii

Part 5: Computational thinking 11

 44 Crazy characters 12

 45 Puzzle me 13

Contents

100IdeasforSecondaryTeachers_Sample

I firmly believe that computer science is for everyone. Not only does it foster problem-

solving, creativity and critical thinking skills, but it also has the potential to empower

young people and give them the tools to express themselves in a variety of cool ways.

As society becomes increasingly more reliant on the use of technology, the need for a

formal computing education or qualification becomes ever more important. Not only

are we preparing students for the digital world, but we are also preparing them for jobs

that don’t even exist yet. It is therefore imperative that we provide our students with the

necessary tools to prepare them for every opportunity that might come their way.

Writing this book gave me the opportunity to reflect on my own teaching practice. It

reminded me that, despite graduating with honours in computer science, the thought of

teaching computing for the first time filled me with trepidation. However, I was also

reminded of how excited I was at the prospect of being able to try out some new

teaching strategies, in particular, the idea of teaching computing without computers (also

known as ‘teaching unplugged’).

I was also able to reflect on the valuable lessons learned while teaching computing,

probably the most notable being that context is key! By making computing relevant and

providing a ‘real-life’ context, you can create meaningful learning experiences for your

students. This also applies to relating computing content to other aspects of the

curriculum, which is why I have dedicated a chapter in this book to STEAM (science,

technology, engineering, arts and mathematics).

I also learned that you should never be afraid to let your students teach you! One of the

biggest mistakes that I made early on in my teaching career was to assume that I must be

the fount of all knowledge. The truth of the matter is that it’s impossible to know

everything, especially with a subject like computing. In fact, there will be times when your

students know more than you – coming to terms with this inevitable truth is an important

step in your professional development. Be open to learning alongside your students and

don’t be afraid to ask them for help!

Finally, despite what the title of the book may suggest, the intention of this book is not to

make every lesson outstanding. While it is admirable to aspire to be outstanding all the

time, to achieve this would be unsustainable and a detriment to your health and

wellbeing! Instead, this book is a compilation of tried and tested practical ideas, designed

to be adapted and modified, which have the potential to create outstanding learning

experiences for you and your students.

I would love to hear how you use these ideas in your own classroom, so please do get in

touch! Please share your reflections with me @clcsimon on Twitter using the #100ideas

hashtag or via my Facebook page, www.facebook.com/teachwithict.

 i

100IdeasforSecondaryTeachers_Sample

9.1/10 – "Another great book within this fantastic series of practical teaching books, offering great

support and resource ideas to support computing at secondary level." – UKEdChat

“A pocketful of inspiration for your next computing lesson.” – Hello World Magazine

“An outstanding book that can simply be picked up off the shelf as a means to inspire any teacher

when delivering computing. Simon has shared these super quick ideas that will have impact in

every classroom, from rubber duck debugging to pedagogical approaches in the subject. This is

an excellent read!” – Matt Warne, Head of Computing and Digital Learning at RGS The Grange,

CAS Master Teacher and Computing Champion, @MattWarne

“Read this if you teach Computing! Packed with lesson ideas but more importantly loads of

nuggets of wisdom about pedagogy: research-informed techniques that work, all packaged into

bitesize chunks you can read in your break or put this on your summer reading pile to come back

refreshed and raring to go in September. I will definitely be doing "code golf" (write a program to

solve a problem in as few lines as possible), "crazy characters" (back-to-back drawing to teach

the importance of clear instructions) and "intelligent pieces of paper" (introducing AI by playing

noughts and crosses against a written algorithm). Simon has pulled together a goldmine of

inspirational and powerful ideas which is essential reading for the Computing teacher.” –

Alan Harrison, Head of Computing at William Hulme's Grammar School, CAS Master Teacher,

@MrAHarrisonCS

“I highly recommend this book. Whether primary or secondary contains a bunch of amazing ideas

to inspire you and your students in all things computing, coding, programming etc.” –

Tim Wilson, CAS Community Outreach Manager, @casmidlands

“This book is amazing for trainee teachers, newly qualified teachers, and the more experienced

teachers. I have been a teacher for 6 years, feel I have the depth in subject knowledge but

wanted exercises across the topics that were fresh, engaging and looked at cognitive load. This

book ticks all the boxes! Hopefully there will be a version 2 soon.” –

Ms. C. Gryspeerdt, CAS Master Teacher, Community Leader and Digital School House Lead

teacher, @CLG7179

ii

100IdeasforSecondaryTeachers_Sample

This book includes quick, easy and practical ideas for you to dip in and out of to help you deliver

effective and engaging computing lessons. Each idea includes:

• a catchy title, easy to refer to and share with your colleagues

• an interesting quote linked to the idea

• a summary of the idea in bold, making it easy to flick through the book and identify an

idea you want to use at a glance

• a step-by-step guide to implementing the idea.

Each idea also includes one or more of the following:

Share how you use these ideas and find out what other practitioners have done using #100ideas.

Online resources to accompany this book can be found at www.teachwithict.com/100ideas. Here

you will find editable versions of all the code needed to run the ideas. You can copy and paste the

code or tweak it to suit your requirements. There are also a variety of downloadable resources

such as pre-prepared cards and worksheets to help you put the ideas into practice.

iii

 Taking it further

Ideas and advice for
how to extend the
idea or develop it

further.

 Bonus idea

Bonus ideas in this

book that are extra-

exciting,

100IdeasforSecondaryTeachers_Sample

Programming
strategies

Part 1

100IdeasforSecondaryTeachers_Sample

Paired programming

‘Sir, is it my turn to drive yet?’

For many, the idea of students working in pairs at a computer,
especially if access to a computer is limited, is fairly common.
However, even if you have the luxury of students being able to
work on their own at a computer, you may still wish to consider
students working in pairs, particularly when learning how to code.

Paired programming, as the name suggests,

sees students working in pairs, with one taking

the role of the driver (inputting the code into

the computer) and the other assuming the

role of navigator (reading out instructions and

checking each line of code as it is typed in).

Pairing students up makes sense for a number

of reasons, even more so when learning how

to code! Paired programming has been shown

to improve overall confidence, produce fewer

errors and increase engagement compared

with learning to code individually. In fact, it

is a practice that is widely used in industry by

professional programmers.

A word of caution! While at first it may seem

beneficial to pair up higher-achieving students

with those of lower ability, I find that this can

have negative effects, as often one student

may feel that they are being held back or

another may take over completely.

Experience shows that pairing students of

similar ability seems to produce the best

outcomes.

2

100IdeasforSecondaryTeachers_Sample

Rubber duck debugging

‘I name my duck Ducky McDuck Face!’

Have you ever started asking someone to help you to solve a
problem and, halfway through, you figure it out for yourself?
Well, this is pretty much how rubber duck debugging works. The
majority of ‘code bugs’ originate from not being clear and explicit
with instructions. By describing your problem to the duck, you
force yourself to express your ideas in a clear and logical way!

Rubber duck debugging is a programming

methodology used by software engineers

to help them to find bugs and problems in

their code. The term ‘rubber duck’ refers to

an inanimate object that understands little or

nothing about the given problem!

First, you’ll need to acquire some rubber ducks!

I find that the local pound store is usually a

good place to start. Give each student a duck

and ask them to name it. Once the students

have named their duck and have stopped

throwing them around the classroom (!), ask

them to place their duck next to their computer.

Tell the students to address their duck by

its name and tell the duck something about

themselves – while feeling strange at first, this

should help the students to get over the fear of

talking to the duck in front of their peers!

Share with students some broken code (I tend

to start with some simple syntax errors) and a

brief explanation of what the code is meant to

do. Tell the students to inform their duck that

they’re going to go over some code with it!

Instruct the students to explain to their duck

what the code is supposed to do and then

explain the code in detail (line by line).

Eventually, the students should spot the

seemingly obvious error, at which point they

can thank their duck for being such a help!

3

100IdeasforSecondaryTeachers_Sample

Code golf

‘Anyone for a game of code golf? Fore!’

One strategy that exemplifies the concept of gamification in the
teaching of coding is a game called ‘code golf’.

Code golf owes its name to its resemblance to

the scoring system used in conventional golf,

where participants aim to achieve the lowest

score possible. The idea is simple: participants

are given a problem (or working solution) and

are challenged to solve it using the fewest lines

of code.

The aim of code golf is to encourage efficient

use of code. Efficient code uses less RAM,

compiles quicker and uses up less storage

space. Students can use a combination of

features such as loops (for, while, repeat)

and functions (or sub-routines) to achieve

their optimised code. However, readability

and usability must not be sacrificed at the

expense of code optimisation. Therefore,

white space and comments do not count as

lines; we still want to encourage students to

break up and comment their code so that it is

comprehensible to others, easier to debug and

easy for others to reuse.

There are two main ways to play code golf.

The first way requires students to solve a

given problem using the fewest lines of code.

The second method, which requires a little

more preparation from the teacher, requires

the students to optimise a given working

solution. In both methods, the challenge is

for the students to create a solution using

the least amount of code. To add a little extra

challenge, the teacher can add a ‘par’ value (or

target number), with the par being the optimal

number of lines of code. This par value can be

 altered for different levels of ability (similar to

4

100IdeasforSecondaryTeachers_Sample

the ‘handicap’ system in conventional golf),

thus allowing the teacher to differentiate

the activity.

The following is an example of a simple ‘par

challenge’ using the turtle library in Python.

In this example, students are challenged to

create a square using six lines of code (par 6).

Share the following example code and ask the

students to identify the repeating pattern.

import turtle

window = turtle.Screen()

timmy = turtle.Turtle()

timmy.forward(100)

timmy.right(90)

timmy.forward(100)

timmy.right(90)

timmy.forward(100)

timmy.right(90)

timmy.forward(100)

timmy.right(90)

Ask students to suggest ways in which the code

can be made more efficient – draw out answers

such as ‘use a loop’ or ‘use a repeat’, etc. Share

the optimised solution for the above example:

import turtle

window = turtle.Screen()

timmy = turtle.Turtle()

for loopCounter in range(4):

timmy.forward(100)

timmy.right(90)

Inform the students that, in the modified

example, the code has been made more

efficient by using a counted loop. Explain that

efficient code uses less RAM, compiles quicker

and uses up less storage space.

Put students into pairs (see Idea 1: Paired

programming) and challenge them to create

a series of regular polygon shapes (e.g.

equilateral triangle, pentagon, hexagon, etc.)

using the fewest lines of code possible.

Create a score card for

students to record the

number of lines used

for each shape.

5

Bonus idea

100IdeasforSecondaryTeachers_Sample

Game design

‘Sir, can we make Flappy Bird?’

Often, the first time that you mention the word ‘coding’ to
children, their initial reaction is ‘are we going to make games?’.
While coding is not about making games, game design can be
used as a hook to encourage students to learn to code.

Game design, as the name suggests, is the

process of planning the content and rules of a

game. It also includes the design of gameplay,

environment, storyline and even characters.

Now, thanks to a plethora of free online tools,

coding games has never been easier!

Scratch (scratch.mit.edu) is perfect for creating

games and, despite its simplicity and appeal to

younger audiences, should be on everyone’s

list of ‘go-to’ game-creation tools.

Stencyl (www.stencyl.com) is a free game-

creation platform, which, utilising a Scratch-

like interface, allows students to create games

for iOS, Android, Windows and Mac.

Alice (www.alice.org) is a free and open-source

3D-programming environment designed to

teach students object-oriented and event-

driven programming. In Alice, students drag

and drop graphic tiles in order to create

animations or program simple games in 3D.

App Inventor (appinventor.mit.edu) is a great

tool to teach programming. Like Scratch, App

Inventor uses a drag-and-drop interface that

allows you to assemble code from blocks.

Microsoft MakeCode Arcade (arcade.

makecode.com) is a web-based, beginner-

friendly code editor that allows you to create

retro arcade games. With MakeCode Arcade,

students can create games using either blocks,

JavaScript or a combination of both.

6

100IdeasforSecondaryTeachers_Sample

PRIMM

‘My students seem so much more confident when learning to code
using PRIMM.’

PRIMM incorporates discussion and investigation of sample code
through scaffolded tasks to help students to understand code
before they start writing their own code.

I was first introduced to the idea of PRIMM

at a Computing at School workshop led by

Dr Sue Sentence (King’s College London).

PRIMM is a research-based approach to

teaching programming. It is made up of five

stages: Predict, Run, Investigate, Modify,

Make. Each stage is used in planning lessons

and activities to support the learning of

programming.

The five stages of PRIMM are:

• Predict: Students are given a working

program and challenged to predict what the

code will do. At this level, the focus is on

what the code actually does.

• Run: Students run the program so that they

can test their predictions and discuss their

findings with their partner/rest of the class.

• Investigate: The teacher provides a range of

scaffolded activities aimed to help the students

to explore what each line of code does.

Strategies can include tracing, commenting

code, annotating, debugging, etc.

• Modify: Students are challenged to modify

the working program in order to change its

functionality in some way.

• Make: Students design a new program that is

based on the given solution but which solves

a new problem.

7

100IdeasforSecondaryTeachers_Sample

Parsons problems

‘Help students to learn how to code by removing some of
the barriers!’

When students move from block-based languages to text-
based languages, they often get frustrated with syntax errors.
One method that helps to reduce this frustration is ‘Parsons
problems’.

Parsons problems are programming puzzles

where a working solution to a problem has

been broken up into blocks of code and

jumbled up. Students are given the mixed-up

code and challenged to reassemble the code in

the correct order.

Some Parsons problems, often referred

to as two-dimensional Parsons problems,

also require the code blocks to be indented

correctly. Parsons problems can also contain

extra lines of code, called distractors, which are

not needed for the code to work.

Although primarily used with text-based

languages, Parsons problems can be used with

block-based languages too! The idea is to allow

students to focus on the core concepts, such

as flow of control, conditionals and loops,

without the frustration of syntax errors.

Example of a Parsons problem with distractors:

Parsons problem Solution

timmy = turtle.Turtle() import turtle

window = turtle.Screen() window = turtle.Screen()

timmy.forward(100) timmy = turtle.Turtle()

timmy.right(90) for loopCounter in range(4):

timmy.turn(90) timmy.forward(100)

For loopCounter in range(4) timmy.right(90)

for loopCounter in range(4):

import turtle

8

computers altogether can
further reduce confusion
and frustration! I suggest
starting by printing and
laminating some code
blocks or lines of code for
students to sort.

100IdeasforSecondaryTeachers_Sample

Use-modify-create

‘Reduce anxiety while supporting growth with this simple
three-stage approach to learning to code!’

When we learn to read and write as children, we often tend to
learn how to read first. So, why is it that when we teach children
to code, we often get them to write code before they can read
it? This is the main rationale behind a three-stage approach to
learning to code, known as ‘use-modify-create’.

The idea behind this approach is to encourage

children to ‘use’ an existing snippet of code and

explore what it does, ‘modify’ (or tinker with)

the code to change its behaviour and, once they

understand how the program works, ‘create’

a new program of their own. This strategy

compliments the Papert-style approach of

learning by exploring and tinkering.

How it works

Use: Provide students with a snippet of working

code. Give students time to run the program

and figure out what the code is meant to do

and how it works. Where appropriate, provide

students with questions or prompts to aid with

their investigations.

Modify: As the students become more

comfortable with the program, encourage them

to start changing it. For example, if the program

is written in Scratch, the students could start by

simply changing the sprite or by changing some

of the variables. As the students’ confidence

begins to grow, they can start to make more

complex changes to the code.

Create: Once the students are confident with

how the program works, have them create

their own program using what they have

learned.

9

100IdeasforSecondaryTeachers_Sample

Hour of Code

‘Give your students a ‘byte’-sized introduction to computer science
with an hour of code.’

The Hour of Code started as a one-hour introduction to computer
science, designed to demystify ‘code’ to show that anybody can
learn the basics, and to broaden participation in the field of
computer science.

#HourOfCode

10

Hour of Code takes place each year during

Computer Science Education Week (usually

during the second or third week of December),

to mark and celebrate the birth of computing

pioneer Admiral Grace Murray Hopper (9

December 1906).

Why Hour of Code?

Every student should have the opportunity to

learn computer science. It helps to nurture

problem-solving skills, logic and creativity.

By starting early, it may also encourage some

students to take up computer science as a

GCSE, when it comes to their options.

How to participate in the Hour of Code

You can organise an Hour of Code event

in your school at any time, not just during

Computer Science Education Week. There is a

handy guide to getting started on the official

Hour of Code website (hourofcode.com/uk).

Hour of Code can be delivered during normal

lessons or as part of an extra-curricular club.

Where to start

Thankfully, you will find a plethora of resources

available online dedicated to Hour of Code.

Below are just a few of my favourites:

• Hour of Code: hourofcode.com/uk

• Code.org: code.org/hourofcode/overview

• Tynker: tynker.com/hour-of-code

100IdeasforSecondaryTeachers_Sample

Computational
thinking

Part 5

100IdeasforSecondaryTeachers_Sample

Crazy characters

‘You told me to draw a circle, but you never said how big!’

One way to reinforce the importance of clear and precise
instructions when writing code is to challenge students to write a
simple set of instructions for drawing a ‘crazy character’!

Put students into pairs and ask each pair to sit

with their backs to one another. Give one pair

an activity card (containing a simple character

design and set of instructions) and the other

a pen and paper/mini-whiteboard. Example

instructions:

• Create a circle for the body.

• Add two eyes.

• Add four legs.

• Add a mouth.

• Add a tooth.

Inform the students with the activity cards that

they must read out their instructions to their

partner, who must try to recreate their character

using instructions alone. After five minutes, ask

the students to compare their drawings with

the original and to note down any similarities/

differences between the two images.

Ask: ‘Why are all the drawings so different to

the originals?’ Draw out answers such as, ‘Not

enough detail in the instructions’ and ‘The

instructions need to be more precise’. Ask

the students to suggest ways to improve the

instructions and make a note of these.

Set a timer for 15 minutes and challenge the

students, in their designated pairs, to improve

the instructions on the activity cards. Once

the time is up, select pairs at random to read

their instructions out aloud for you to follow,

ensuring that you follow their instructions

exactly while drawing their character on a

 whiteboard or flipchart for the class to see.

12

100IdeasforSecondaryTeachers_Sample

Bonus idea

Have students attempt

to solve other popular

puzzles such as Sudoku,

‘camel crossing’, ‘river-

crossing conundrum’,

Tower of Hanoi, etc.

Puzzle me

‘Sir, I’m puzzled!’

One way to provide students with the opportunity to practise
computational thinking skills (decomposition, pattern-matching,
abstraction and algorithm design) is to have them solve puzzles.

Cube challenge

A two-cube calendar is a desk calendar

consisting of two cubes with faces marked with

digits 0 to 9. Students are challenged to fill in

the gaps on two cube nets so that it is possible

to arrange the cubes to represent any chosen

day of the month (from 01 through to 31). Both

cubes must be used at all times – for example,

to represent day seven, both 0 and 7 must be

visible. Example solution:

Note: While at first it appears that there are

not enough sides for all the numbers, students

will eventually realise that the 6 doubles as a 9

when turned upside down.

Word ladders

Word ladders were invented by Lewis Carroll,

author of Alice in Wonderland. Students are

given a start word and end word and, by

progressively altering a single letter at a time,

they must change the start word into the end

word. Each word in the ladder must be a valid

English word and must have the same length.

Often the start word and end word are related.

For example, to turn ‘COLD’ into ‘WARM’, one

possible ladder could be: COLD → CORD →

WORD → WARD → WARM.

 13

 4

0 1 2 3

 5

 8

6 2 1 0

 7

100IdeasforSecondaryTeachers_Sample

100 Ideas for
Secondary Teachers:

Outstanding Computing
Lessons

Simon Johnson

Bloomsbury
bit.ly/100IdeasSecCS

Amazon

bit.ly/100ideasCS

