
CURRICULUM ALIGNMENT GUIDE
Computing programmes of study:

KEY STAGE 2

National curriculum in England

OVERVIEW

INTRODUCTION

100 ideas: Outstanding Computing Lessons is a collection of 100 practical, tried-and-tested ideas for teaching

computing. It is aimed at computing / ICT teachers of all levels, whether specialist or non-specialist, newly qualified

or experienced.

For more information on 100 Ideas: Outstanding Computing Lessons and to find additional education resources and

supporting materials, including more than 50 worksheets to accompany the activities in the book, visit:

teachwithict.com/100ideas

10 sample activities can be downloaded for free at teachwithict.com/bonus

KEY STAGE 2

YEARS 3, 4, 5 AND 6 PROGRAMME OF STUDY

2.1 Design, write and debug programs that accomplish specific goals, including controlling or simulating physical

systems; solve problems by decomposing them into smaller parts.

2.2 Use sequence, selection, and repetition in programs; work with variables and various forms of input and output.

2.3 Use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms

and programs.

2.4 Understand computer networks including the internet; how they can provide multiple services, such as the

world wide web; and the opportunities they offer for communication and collaboration.

2.5 Use search technologies effectively, appreciate how results are selected and ranked, and be discerning in

evaluating digital content.

2.6 Select, use and combine a variety of software (including internet services) on a range of digital devices to design

and create a range of programs, systems and content that accomplish given goals, including collecting, analysing,

evaluating and presenting data and information.

2.7 Use technology safely, respectfully and responsibly; recognise acceptable/unacceptable behaviour; identify a

range of ways to report concerns about content and contact.

PART 1: PROGRAMMING STRATEGIES

IDEA DESCRIPTION STANDARDS

001 Paired programming – A research-driven coding strategy for helping
novice learners.

2.1

002 Rubber duck debugging – A programming strategy used to help students
find bugs and in their code.

2.1, 2.3

003 Code golf – A programming strategy to help students create more efficient
code.

2.1, 2.2

004 Game design – Using games as a hook to encourage students to learn how
to code.

2.1

005 PRIMM – A research-based approach to teaching coding and for reducing
cognitive load.

2.1, 2.3

006 Parsons problems – Help students learn how to code by removing some of
the barriers.

2.1, 2.3

007 Use-modify-create – Reduce anxiety while supporting growth with this
simple three-stage approach to learning to code.

2.1, 2.3

008 Hour of Code – Give your students a ‘byte’-sized introduction to computer
science with an hour of code.

2.1, 2.2

009 Code bug – Build resilience and reduce anxiety when teaching children to
code by purposely introducing ‘bugs’ early on in the learning process.

2.3

010 Code combat – Put your students’ coding skills to the test by pitting them
against each other in code combat!

2.1, 2.2

011 Teaching with robots – Coding can often be difficult for students to grasp.
Robots can provide a simpler, more tangible introduction to programming.

2.1, 2.2

PART 2: COMPUTING STRATEGIES

IDEA DESCRIPTION STANDARDS

012 Take your screwdrivers to work – Students explore how computers work
by taking old devices apart.

013 DART your students – A strategy designed to improve students’
reading comprehension.

014 Contextualise learning – Explore strategies for making computing relevant
and provide ‘real-life’ learning experiences for students.

015 Go unplugged – Teaching computing without computers.

016 Socratic debate – Students debate the social, ethical, and legal issues
surrounding the use of computers.

017 Peer instruction – A research-driven approach to teaching difficult
concepts that students often misunderstand.

018 Game-based learning – Exploring the use of games, such as Minecraft:
Education Edition, to teach children how to code.

019 Using QR codes – Using QR codes to teach computing theory.

020 Escape rooms – Students must solve a series of binary puzzles to open
physical locks and stop a simulated ‘virus attack’.

021 Blogs and wikis – Using blogs and wikis to teach computing theory.

022 Flipped learning – Reversing the traditional way of teaching to make
better use of classroom time.

023 Guided discovery – An inductive approach to teaching and learning where
students take an active role in discovering knowledge and developing
understanding for themselves.

PART 3: ICT AND DIGITAL LITERACY

IDEA DESCRIPTION STANDARDS

024 Fake news – Students learn how to identify ‘fake news’ articles before
creating their own fake news story.

2.7, 2.5

025 Copycat – A fun activity that teaches students about copyright,
public domain, fair use, and Creative Commons.

2.7

026 Mario Kart ™ spreadsheets – An example of how to use game-based
learning to teach students essential spreadsheet skills.

2.6

027 Fakebook – An ‘escape room’ challenge which helps students understand
the importance of protecting their online presence.

2.7

028 Database detectives – Students test their sleuthing skills with this
‘whodunnit’ themed database challenge.

2.6

029 Did you meme it? – Students explore the purpose and ethics of memes
before creating their own meme on an agreed topic.

2.7

030 Videography – Students create a YouTube-style instructional video whilst
also explore the importance of concise instructions (algorithms).

2.6

031 Infographics – Students create infographics about their mobile phone
habits.

2.6

032 Dragon’s Den – Students work as a team to design an innovative solution
to a global problem.

2.6

033 Wayback Machine – Students learn about their digital footprint and the
long-lasting impact of their online actions.

2.7

PART 4: COMPUTING ACTIVITIES

IDEA DESCRIPTION STANDARDS

034 What a waste – Students, working in teams, explore innovative ways to
reduce e-waste.

2.6

035 Role reversal – Students take on the role of a teacher.

036 Storage Top Trumps® – Students explore different storage devices before
creating a game of Top Trumps® based on what they have learned.

037 Little Man Computer – Students explore ‘Little Man Computer’ – a
simulator that models the basic features of a modern computer that uses
Von Neumann architecture.

038 Features of a CPU (a lesson using DART) – Students explore the main
features of a CPU.

039 Internet of things – Students design a ‘smart home’ that utilises the
internet of things.

040 The great input/output QR hunt – Students complete a QR hunt to
discover facts about different input and output devices.

041 Moral machine – Students explore the ethics behind creating AI for self-
driving vehicles.

PART 5: COMPUTATIONAL THINKING

IDEA DESCRIPTION STANDARDS

042 Making the tea algorithm – Students explore the importance of creating
precise instructions by creating an algorithm for making a cup of tea /
coffee.

2.1, 2.3

043 Teaching with magic – Using magic to teach computational thinking skills. 2.1, 2.3

044 Crazy characters – Students write an algorithm for drawing a monster. 2.1, 2.3

045 Puzzle me – Using puzzles to practise computational thinking skills
(decomposition, pattern-matching, abstraction and algorithm design).

2.1, 2.3

046 Human robot – Exploring algorithms through physical activities such as
movement and dance.

2.1, 2.3

047 A-maze-ing algorithms – Students explore the importance of clear and
precise instructions by writing algorithms to solve a simple maze.

2.1, 2.3

048 20 questions – Students explore the efficiency of different
search algorithms by playing a game of ‘20 questions’.

049 Breaking the code – Students develop their problem-solving skills with a
series of code-breaking challenges.

050 Origami algorithms – Students write algorithms for folding a paper
aeroplane or origami animal.

2.1, 2.3

051 Guess the object – Getting students to model, draw or mime a variety of
different objects can help them to understand the concept of abstraction.

2.3

PART 6: UNPLUGGED ACTIVITIES

IDEA DESCRIPTION STANDARDS

052 Image compression – Students learn about lossless compression without
the use of a computer.

053 Bubble sort dance algorithm – Students learn how a bubble sort
algorithm works is via the medium of Hungarian folk dance!

054 World Wide Web unplugged – Students role-play what happens when a
user enters an address in a web browser.

2.4

055 Intelligent piece of paper (AI) – Exploring artificial intelligence (AI) with a
game of Tic-Tac-Toe.

2.1

056 Envelope variables – Demonstrate a simple program that uses variables
and assignment by running them on a computer made entirely out of
students.

2.2

057 Card sort – Students explore three common sorting algorithms (bubble,
merge, and insertion) by sorting playing cards.

058 Binary representation of images (unplugged) – Students explore how a
computer represents images using binary.

059 How computers work – Students take on the role of various parts of a
computer and simulate the running of a simple program.

060 Memory unplugged – Students explore how data is transferred between
different storage locations inside a computer, such as RAM, cache
memory, secondary storage and virtual memory.

061 Network topologies – Using string and various other household objects,
students simulate the three most common network topologies.

2.4

PART 7: DATA REPRESENTATION

IDEA DESCRIPTION STANDARDS

062 Binary addition – Students learn how to add two numbers using binary.

063 Binary numbers – Students learn about binary.

064 Binary representation of images – Students explore how a computer
represents images using binary.

065 Binary representation of sound – Students explore how a computer
represents sound using binary.

066 Binary bingo – A fun strategy to test students’ understanding of binary
representation of numbers.

067 It’s all about hex – Students learn about the hex numbering system.

068 ASCII ‘secret’ agent – Students explore how a computer represents text
using binary by solving (and creating) as series of coded messages.

PART 8: EXAM PREPARATION

IDEA DESCRIPTION STANDARDS

069 Padlet – Using online curation tools, such as Padlet, to collating resources
in preparation for exams.

2.6

070 Round-robin revision – Make revision fun and engaging with a series of
mini games.

071 Revision podcasts – Create revision resources that students can listen to
anytime, anywhere!

2.6

072 PEE (point, evidence, explain) – A simple strategy to help improve
the quality of written answers to exam questions.

073 PechaKucha – A great way to encourage students to be more
concise and a little more creative with their presentations.

2.6

074 Sketch-noting – A great way to empower students and allow them
to synthesise information visually.

2.6

075 Command word bingo – A simple starter activity that will pay dividends at
exam time!

076 BUG hunt – A technique for helping students understand thoroughly what
is expected of them during exams.

077 Tweet IT – A fun revision strategy that will help students to remember key
information.

078 Revision speed dating – A fun and engaging activity that gets students
talking.

079 Match IT – Make revision engaging and memorable by turning it into a
game!

PART 9: PROGRAMMING ACTIVITIES

IDEA DESCRIPTION STANDARDS

080 Magic 8-ball® – Students create a Magic 8-ball® game using python.

081 Shakespearean insult generator – A fun way to introduce lists and file-
handling in python.

082 Chatting robot – Students learn how to create a ‘rule-based’ chat bot
using python.

083 Just dance – A lesson which uses dance as a medium for introducing key
programming concepts to children.

2.1, 2.2, 2.3

084 Adventures in text – Students learn how to create an 80s-style text
adventure game in python.

085 Mad Libs® – Students code the popular phrasal template word game in
python.

086 Sorting Hat – Students create a Harry Potter-style sorting hat in python.

087 Turtle power (a lesson using PRIMM) – Students learn how to create
regular polygons using the turtle library in python.

2.1, 2.2, 2.3

088 Guess my number – A fun programming challenge which teaches concepts
such as variables, data types and selection.

089 Mind-reading algorithm – Students learn how to create a mind-reading
game in python.

090 Cat and mouse – A simple cat and mouse game using Scratch. 2.1, 2.2, 2.3

091 Reaction timer – Students create a simple reaction timer using python.

PART 10: COMPUTING AND STEAM

IDEA DESCRIPTION STANDARDS

092 Art attack – Using art as a creative medium for exploring complex
concepts in computing.

093 Lights, camera, action – Students learn how to create light art using slow
shutter speed photography and code.

2.1, 2.2, 2.6

094 Making music – Students learn how to create music with code. 2.1, 2.2, 2.3

095 Coding probability – Students explore probability, including relative
frequency, with code.

096 Physical computing – Exploring how to teach coding using physical
devices.

2.1, 2.2, 2.3

097 Turtle snowflakes – Students learn how to code snowflakes using the
turtle library in python.

2.1, 2.2, 2.3

098 Coding the weather – Students learn how to manipulate ‘real’ weather
data using python and OpenWeather data.

099 Rubbish robots – Students are challenged to build a robot using general
household objects and electronic components.

2.1, 2.2, 2.3

100 Color splash – Students learn how to create colour splash images using a
free online image editor.

2.6

PART 11: BONUS ACTIVITIES

IDEA DESCRIPTION STANDARDS

101 What’s your elf name? – Students create a name generator using python.

102 Guess / _ _e / word – Students create a hangman style word game using
python.

103 Cards against humanities – Students code a phrasal template word game
in python.

104 Shakespearean complement generator – Coding challenge based on the
Shakespearean sonnet ‘Shall I compare thee to a summer’s day?’

105 Hacking the news – Hacking the news with HTML. 2.1, 2.7

106 Data science detectives – Teaching computational thinking using historical
data.

107 Code tracing – A simple strategy for reducing cognitive load. 2.1, 2.3

108 Make me happy – Students create an AI powered sentiment analysis bot
using Scratch.

2.1, 2.2

109 Worked examples – An effective strategy for reducing cognitive load for
novice learners.

2.1, 2.3

110 Team teaching – Tips for planning a lesson with a colleague.

